《稍复杂的方程》教学设计
作为一名教学工作者,很有必要精心设计一份教学设计,借助教学设计可使学生在单位时间内能够学到更多的知识。我们应该怎么写教学设计呢?以下是小编帮大家整理的《稍复杂的方程》教学设计,希望能够帮助到大家。
《稍复杂的方程》教学设计1
教学内容:教科书69页例2
教学目标:
1、是学生感受数学与现实生活的联系。
2、初步学会列方程解决一些简单的实际问题。
3、培养学生用多种方法解决问题的能力。
教学过程:
一、复习
1、复习数量关系:
单价 × 数量 = 总价
速度 × 时间 = 路程
工作效率 × 工作时间 = 工作总量
2、已知苹果的单价和数量,怎样求总价
已知梨子的单价和数量,怎样求总价
已知苹果的总价和梨子的总价,怎样求两种苹果总价。
二、新授课
教学教科书69页的例2 。
1、请同学们观察69页上面的一幅图
学生:通过图我们观察到
阿姨到水果店去买了苹果和梨各2千克,共10.4元,每千克梨2.8元,每千克苹果多少元?
说一说这一道题的已知条件和问题分别是什么?
2、分析本题的数量关系。
苹果的总价 + 梨的总价 = 总价
种水果的单价总和 × 2 = 总价
3、列方程并解方程。
⑴苹果的总价 + 梨的总价 = 总价
解:设苹果每千克x 元,
2x + 2.8 × 2 = 10.4
2x+5.6= 10.4
2x+5.6-5.6= 10.4-5.6
2x=4.8
2x÷2=4.8÷2
x=2.4
答:苹果每千克2.4元。
⑵两种水果的单价总和 × 2 = 总价
解:设苹果每千克x 元,
(x + 2.8)× 2 = 10.4
x + 2.8 = 10.4 ÷ 2
x + 2.8 = 5.2
x = 5.2 – 2.8
x = 2.4
验算:把x = 2.4代入原方程
左边 = (2.4 + 2.8) × 2 = 10.4 右边 = 10.4
因为 左边 = 右边
所以 x = 2.4 三原方程的解。
答:苹果每千克2.4元。
三、巩固练习: 71页2题
通过观察图例,使学生明白解题的思路和知道怎样着手解这个题。
学生:
解一: 儿童票价 + 成人票价 = 总价 解二:(成人单价 + 儿童单价)× 2 = 总价
解设儿童票价每张x元
2x + 4 × 2 = 11 (x + 4) × 2 = 11
2x + 8 = 11 x + 4 = 11÷ 2
2x = 11–8 x + 4 = 5.5
2x = 3 x = 5.5 - 4
x = 1.5 x = 1.5
答:略
小结:今天我们学习了用方程解决生活中的实际问题。
1、列方程前首先要做什么?
2、应用数量间的等量关系列出方程
3、正确地求解
4、验算并写出答语。
四、作业 练习十三 72 ——73页(1—4题)
《稍复杂的方程》教学设计2
教学内容:书P65例 练习十二1T——5T
教学目标:
1、理解实际问题中有关和、差、倍的数量关系;
2、学会设未知数,列形如ax±b=c的方程,解决实际问题。
3、让学生体会列方程解决问题的优越性,掌握列方程解决问题的基本步骤;
4、引导学生根据问题的特点,灵活选择较简洁的算法,进而在提高解决问题的同时,培养学生思维的灵活性。
教学重点:教会学生用方程解决实际问题,学习形如ax±b=c的方程;
教学难点:分析、找出数量间的相等关系,正确列出方程;
教学过程:
一、准备:
1、口答下列方程的解是多少?
y-20=4 2x=24 a+4=7 15=3x
说说你解方程的思路?
2、说说各题中的等量关系,并列出带有未知数的方程式:
①母鸡有30只,是公鸡的2倍。公鸡有几只?
②甲数是17,是乙数的.2倍。乙数是多少?
③足球上的白色皮共20块,是黑色皮的2倍。黑色皮有几块?
二、导入例题并教学例1
对题目进行改编,添加条件导出例1:
①足球上的白色皮共20块,比黑皮的2倍少4块。黑色皮有几块?
对这个题目的改编就是我们今天要学习的《稍复杂的方程》。
1、题中的等量关系是什么呢?
(学生分析:白皮块数与黑皮块数之间是一个什么样的关系呢?)黑皮块数×2-4=20黑皮块数×2-20=4
2、怎样根据关系式列方程呢?
3、小组讨论怎样解答?
4、小组汇报解复杂方程的基本步骤:
①找出题中选题关系;②写出“解、设”;
③列方程、解方程;④检验;
三、反馈练习:
①母鸡有30只,比公鸡的2倍少6只。公鸡有几只?
②甲数是17,比乙数的2倍多5。乙数是多少?
3、讨论:小组合作怎样解决这个数学问题?
5、还能用不同的方程解答吗?
四、小结:你学会了什么?
五、作业:P66,1、2、6、9